

 2001, Wireless Application Protocol Forum, Ltd. All Rights Reserved. Terms and conditions of use are available from
the WAP Forum Web site (http://www.wapforum.org/what/copyright.htm).

WAP Persistent Storage Interface
 Version 20-December-2001

Wireless Application Protocol
WAP-227-PSTOR-20011220-a

A list of errata and updates to this document is available from the WAP Forum TM Web site, http://www.wapforum.org/,
in the form of SIN documents, which are subject to revision or removal without notice.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 2 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

© 2001, Wireless Application Forum, Ltd. All rights reserved.

Terms and conditions of use are available from the WAP Forum Web site at
http://www.wapforum.org/what/copyright.htm.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. You may not use this document in
any other manner without the prior written permission of the WAP Forum™. The WAP Forum authorises you to copy
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute
an endorsement of the products or services offered by you.
The WAP Forum™ assumes no responsibility for errors or omissions in this document. In no event shall the WAP
Forum be liable for any special, indirect or consequential damages or any damages whatsoever arising out of or in
connection with the use of this information.

WAP Forum™ members have agreed to use reasonable endeavors to disclose in a timely manner to the WAP Foru m the
existence of all intellectual property rights (IPR's) essential to the present document. The members do not have an
obligation to conduct IPR searches. This information is publicly available to members and non-members of the WAP
Forum and may be found on the "WAP IPR Declarations" list at http://www.wapforum.org/what/ipr.htm. Essential IPR
is available for license on the basis set out in the schedule to the WAP Forum Application Form.

No representations or warranties (whether express or implied) are made by the WAP Forum™ or any WAP Forum
member or its affiliates regarding any of the IPR's represented on this list, including but not limited to the accuracy,
completeness, validity or relevance of the information or whether or not such rights are essential or non-essential.

This document is available online in PDF format at http://www.wapforum.org/.

Known problems associated with this document are published at http://www.wapforum.org/.

Comments regarding this document can be submitted to the WAP Forum™ in the manner published at
http://www.wapforum.org/.

Document History

WAP-227-PSTOR-20010530-a Initial
WAP-227-PSTOR-20011220-a Current

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 3 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Contents
1. SCOPE... 5
2. REFERENCES .. 6

2.1. NORMATIVE REFERENCES .. 6
2.2. INFORMATIVE REFERENCES... 6

3. TERMINOLOGY AND CONVENTIONS .. 7
3.1. CONVENTIONS ... 7
3.2. DEFINITIONS .. 7
3.3. ABBREVIATIONS .. 8

4. INTRODUCTION... 9
4.1. DESIGN GOALS .. 9
4.2. FUNCTIONALITY.. 9

5. STORAGE ELEMENTS ...10
5.1. ATTRIBUTES ...10
5.2. STORAGE MEDIUM ...11

5.2.1. Storage Medium Device Types ..12
5.3. DIRECTORIES ...13
5.4. STORAGE OBJECTS ...14

6. NAMING...15

7. MANAGEMENT...16
7.1. DELETE ...16
7.2. TRANSACTION SEMANTICS...16

8. SECURITY ...17
9. ERROR HANDLING...18
10. LIBRARY FUNCTIONS ..19

10.1. LIBRARY ...19
10.2. MISCELLANEOUS SERVICES ...20

10.2.1. enum...20
10.2.2. getStatus...22

10.3. STORAGE PRIMITIVE MANIPULATION...23
10.3.1. create...23
10.3.2. remove ..24

10.4. ATTRIBUTE MANIPULATION..25
10.4.1. getAttribute..27
10.4.2. setAttribute..28

10.5. DATA MANIPULATION...29
10.5.1. getDataSize ..29
10.5.2. getData..30
10.5.3. setData..31
10.5.4. setDataSize ..32

APPENDIX A. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ...33
APPENDIX B. CHANGE HISTORY (INFORMATIVE) ...36
APPENDIX C. IMPLEMENTATION NOTES (INFORMATIVE)..37

APPENDIX D. APPLICATION DEVELOPER NOTES (INFORMATIVE) ..38
APPENDIX E. CODE EXAMPLE (INFORMATIVE) ..39

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 4 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

TABLE OF FIGURES
Figure 5-1. The Abstract Correlation of Storage System Elements to Conventional Storage Systems10

Figure 5-2. The Hierarchy of Primitive Storage Elements – Media, Directories and Storage Objects11

Figure 5-3. Directory Tree Structure ..13

Figure 5-4. Directories are Used to Group Together Storage Objects ..13

Figure 5-5. Characteristics of a Storage Object ..14

TABLES OF TABLES

Table 5-1. Well-known Storage Medium Types ..12

Table 10-1. Storage System Defined Storage Medium Attributes ..25

Table 10-2. Storage System Defined Directory Attributes ...26

Table 10-3. Storage System Defined Storage Object Attributes ...26

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 5 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

1. Scope
The Wireless Application Protocol (WAP) is a result of continuous work to define an industry wide standard for
developing applications that operate over wireless communication networks. The scope of the WAP ForumTM is to
define a set of specifications to be used by service applications. The wireless market is growing very quickly, and
reaching new customers and services. To enable operators and manufacturers to meet the challenges in advanced
services, differentiation and fast/flexible service creation, the WAP ForumTM defines a set of protocols in transport,
security, transaction, session and application layers. For additional information on the WAP architecture, please refer to
“Wireless Application Protocol Architecture Specification” [WAPARCH].

This specification describes the WAP Persistent Storage Base Level Storage Interface. This base level interface
specifies a means to access, store and retrieve persistent data. The base persistent store is not aware of the structure or
format of the stored data.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 6 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

2. References

2.1. Normative References
[CREQ]

“Specification of WAP Conformance Requirements”. WAP Forum.
WAP-221-CREQ-20000915-a. URL:http//www.wapforum.org/

[ISO8601] “Data elements and interchange formats - Information interchange - Representation of dates and
times”, International Organization For Standardization (ISO), 15-June-1988

“Data elements and interchange formats - Information interchange - Representation of dates and
times, Technical Corrigendum 1”, International Organization For Standardization (ISO) –
Technical Committee ISO/TC 154, 01-May-1991

[RFC2046] “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types”. N. Freed & N.
Borenstein. November 1996. URL: http://www.ietf.org/rfc/rfc2046.txt

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2396] “Uniform Resource Identifiers (URI): Generic Syntax”. T. Berners-Lee, R. Fielding, L.
Masinter. August 1998. URL: http://www.ietf.org/rfc/rfc2396.txt

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee. June 1999. URL: http://www.ietf.org/rfc/rfc2616.txt

[UAPROF] “Wireless Application Group User Agent Profile Specification”. WAP Forum. WAP-174-
UAProf-19991110-a. URL: http://www.wapforum.org/

[WAE] “Wireless Application Environment Specification”. WAP Forum. WAP-236-WAESpec.
URL: http://www.wapforum.org/

[WMLS] “WMLScript Language Specification”. WAP Forum. WAP-193-WMLScript-20000324-a.
URL: http://www.wapforum.org/

2.2. Informative References
[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.

November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

[WAPARCH] “WAP Architecture”. WAP Forum. WAP-210-WAPArch-20001130-p.
URL:http//www.wapforum.org/

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 7 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

3. Terminology and Conventions

3.1. Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to
be informative.

3.2. Definitions
Access Controls

Software or hardware methods used in controlling user access of storage elements through passwords or other
security mechanisms.

Application
An application is the executable or interpretable code that is running within the application environment (as
described in [WAE]).

Attribute
Attributes are used to describe the characteristics of a storage element.

Byte
A byte is a binary storage unit that is eight bits in size (also called an octet).

Directory
Directories are the storage elements used to group together and hierarchically organise storage objects and other
directories.

Null value
A special value, or mark, that is used to indicate the absence of any data value.

Persistent Storage
Persistent storage is a repository for statically stored data.

Static
Static describes a data storage device that retains information while the power is turned off.

Storage Device
A storage device is a physical unit that offers the capability to store data in an organised manner that can be
subsequently retrieved. A storage device may be either removable or permanently attached.

Storage Element
A storage element is the basic storage primitive that can be individually selected and manipulated.

Storage Medium
The storage medium is the storage element that represents the physical storage device that is capable of storing
persistent data.

Storage Object
A storage object is the storage element used to store persistent data.

Storage System
An integrated collection of services that are used to manage data storage that offer the capability to create, store,
retrieve, delete and organise persistently stored data.

WAP client
The WAP client is the physical unit where WAE executes.

WMLScript
WMLScript is a lightweight language specified in WAP for programming a WAP client device [WMLS].

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 8 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

3.3. Abbreviations

API Application Programming Interface
EPROM Erasable Programmable Read Only Memory
EEPROM Electrically-Erasable Programmable Read Only Memory
RAM Random Access Memory
RO Read Only
ROM Read Only Memory
R/W Read/Write
SIM Subscriber Identity Module
SRAM Static Random Access Memory
TBD To Be Defined
URI Universal Resource Identifier
URL Uniform Resource Locator
UTC Coordinated Universal Time
WAE Wireless Application Environment
WAP Wireless Application Protocol
WPS WAP Persistent Storage

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 9 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

4. Introduction
This document specifies a standard set of storage services that are coupled with a well-defined interface, used for
organising, accessing, storing and retrieving data that is stored persistently. A brief list of the benefits to WAP
applications resulting from the persistent storage system includes: retain information between sessions, share
information with other applications and personalise an application using initialisation information.

The goal of this document is to describe a “base level” persistent storage system that consists of a set of storage
primitives and a collection of services used to manipulate the storage primitives.

4.1. Design Goals
The following design goals were used in guiding the design of the persistent storage system.

• General Purpose: The API must provide features enabling a WAE application to store and retrieve persistent
data.

• Simplicity: The API should be easy to understand and use. To that extent, the number of function calls will
be minimised, and the structure of the stored data will be intentionally ignored.

• Portable: The concepts presented in this API must be portable across various environments.

• Consistent: This API must be internally consistent in philosophy to other libraries previously defined by the
WAP Forum. Thus, the library is defined, first and foremost, as a WMLScript library in naming, usage, and
error model. Additionally, the storage system will be designed to allow a function to operate consistently on
every storage element that is supported by the storage system.

• Familiar: Current practice suggests a level of conformity with other similar systems and thus defines obvious
usage.

• Flexible: The system must not impose rigorous “standard” types of data to be stored, nor should it attempt the
understanding of such data. To this end, data is not referenced internally or parsed for content. Understanding
of structure and content are left to the application.

• Efficient: The API must not mandate functionality that typically requires initialisation, dictates CPU usage, or
expects large memory overhead.

• Suitable for near term implementation : This API should be operable on a wide variety of WAP devices in a
short time frame. It will not mandate functionality, programming language, or dependency upon subsystems
that are not present in current specifications.

• Extensible: WAP is targeted to extend over a wide range of devices. The storage system must serve a wide
range of WAP compatible devices, from simple to advanced systems, the prescribed set of storage services
must have the capability to be implemented in a restricted runtime environment, recognising that the resources
for code, stack and heap are limited.

4.2. Functionality
The Base Level persistence API is very simple in concept. It allows for retrieving data storage objects, but does not
enforce structure – this is left to the application. Thus, whether a storage object that is being stored is a simple data type
or a large, structured entity, the mechanism used to achieve persistence is the same. All persisted elements in the base
level specification are treated as opaque resources.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 10 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

5. Storage Elements
Persistent storage is a repository for statically stored data that resides locally on the client device. The persistent storage
system provides three primitive storage elements. The storage object is used to store data and is the smallest storage
element that may be independently managed as a unit by the storage system. A directory is used to group together
storage objects and for organising other directories and storage objects into a hierarchical structure. The storage
medium is the storage element that represents a physical storage device that is capable of storing persistent data.

The storage elements that are described in this storage system could be loosely mapped into conventional storage
systems. The following diagram provides an example of how the storage elements of a typical file system and a typical
relational database system correlate to the storage system elements as they are described in this base level persistent
storage system. (Note that in the following diagram, the term “Disk Drive” represents one partition of a physical disk
that has been partitioned into one or more logical drives.)

Persistent Storage
System

 Typical File System Typical Relational
Database System

Storage medium Disk Drive Disk Drive

↑ ↑ ↑

Directory Directory Table

↑ ↑ ↑

Storage object File Record/row Storage Elements

Figure 5-1. The Abstract Correlation of Storage System Elements to Conventional Storage Systems

5.1. Attributes
The characteristics of each storage system element are described using attributes. A storage element’s attributes exist
throughout the life of the storage element. The storage system provides a set of attributes that are used to distinguish
the storage element’s type, to describe the characteristics of the storage element and to characterise the contents of the
data that is stored in the storage element.

Attributes will be designated as either mandatory or optional. The storage system will return an error code when an
optional attribute is requested that is not supported by the particular media or implementation.

A sample of the storage system attributes includes: the format of the storage element’s data, the date that the storage
element was created and the date that the storage element was last modified.

C
om

pl
ex

ity

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 11 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

5.2. Storage Medium
The storage medium element is used to represent a single instance of any device that is capable of storing data
persistently, including both read/write devices and read only devices.

The persistent storage system MUST only provide access to storage media that the client device has made available to
the persistent storage system. The names of all of the local storage media, that the client device has chosen to make
available to the storage system, are recorded by the storage system. A WAE application can then discover the currently
accessible client device’s storage media by using the storage system’s enumeration function.

The mapping of the storage system structure onto the storage medium (e.g. installation, initialisation and formatting) is
outside the scope of the persistent storage system.

Creation Date

Last Modified Date

Content Type

User Data

Storage Objects

Creation Date

Last Modified Date
Directories

Root Directory Directory Directory

Creation Date

Last Modified Date

...

Media

Media Type

Creation Date

Last Modified Date

Creation Date

Last Modified Date

Creation Date

Last Modified Date

Content Type

User Data

Creation Date

Last Modified Date

Content Type

User Data

Figure 5-2. The Hierarchy of Primitive Storage Elements – Media, Directories and Storage Objects

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 12 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

5.2.1. Storage Medium Device Types
The persistent storage system uses a set of well-known names for storage medium that may be potentially used for
persistent storage in mobile devices. The following table contains a list of device types that are currently recognised by
the storage system as valid storage medium types. The names under the “Media Name” column are the names that are
currently accepted by the storage system for the “storageType” attribute that is used in describing storage medium
attributes.

Table 5-1. Well-known Storage Medium Types

Media Type Media Name Capability Lifetime

Battery powered RAM RAM R/W Static

EEPROM EEPROM R/W Static

EPROM/ROM ROM RO Static

FLASH FLASH R/W Static

Magnetic disk DISK R/W Static

Memory Stick FLASH R/W Static

ROM ROM RO Static

Solid state disk DISK R/W Static

SRAM RAM R/W Static

SIM SIM R/W Static

SmartCard SC R/W Static

The base level persistent storage system does support the removal of a removable media device from an individual
client device that is subsequently reinserted into the same client device. Under these circumstances, the removable
media device is managed by the same storage system.

A removable media device that is removed from one client device and is subsequently modified in another system is
considered a portable removable media device. The capability to map the storage system structure and naming scheme
onto a portable removable device, such that the information stored onto the removable device by one client device that
is expected to be subsequently recognised by another client device, is not supported by the base level persistent storage
system.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 13 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

5.3. Directories
Directories are used by WAE applications to logically group or collect together storage objects and provide WAE
applications a means to logically separate their data from other WAE applications. A storage object MUST be a
member of only one directory.

A directory is simply a list of storage objects and additional directories (sub-directories). The hierarchical directory
structure is typically represented as branches of a tree. The directory tree diagrammed below depicts an example of this
hierarchical structure.

Figure 5-3. Directory Tree Structure

The main or top-level directory is referred to as the “root directory". Sub-directories represent the tree's branches and
the storage objects represent the tree's leaves. Each directory may contain additional sub-directories and storage
objects. The maximum number of branches a particular media device can support is specified by a storage media
attribute.

Storage Objects ...

Creation Date

Last Modified Date

Directories

Creation Date

Last Modified Date

Content Type

User Data

Creation Date

Last Modified Date

Content Type

User Data

Creation Date

Last Modified Date

Content Type

User Data

Figure 5-4. Directories are Used to Group Together Storage Objects

While the root directory is referenced by “/”, all of the other directories are referenced by names. A WAE application
names the directory when the directory is created. Either the storage medium or the storage system MAY place a limit
on the maximum number of directories.

A WAE application can discover the directories present on the s torage medium by using the storage system’s
enumeration function.

/

bin tmp etc
storage
objects

storage
objects

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 14 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

5.4. Storage Objects
A storage object is the storage system element that is used for storing
WAE application data. The attributes of a storage object are used to
describe the characteristics of the data that is stored in the storage object.

Each storage object has a local name that is specified by the application
when the storage object is created. This local name typically carries
some significant or recognisable meaning.

Figure 5-5. Characteristics of a Storage Object

Creation Date

Last Modified Date

Content Type

User Data

Storage Object

Attributes
Attributes

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 15 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

6. Naming
Persistent storage elements are identified using the persistent storage URI syntax. This URI syntax is based on
[RFC2396]. Applications MUST use the following URI syntax when accessing storage elements through the persistent
storage system. Furthermore, applications MUST use the absolute path to identify storage elements; the storage system
does not support relative naming.

wpsURI = scheme ":" abs_path

In the persistent storage URI, the scheme always consists of “wps” to identify resources that are provided by the storage
system.

scheme = "wps"

The absolute path that identifies a storage element includes: the name of the media in which the storage element is
located; a sequence of hierarchical directory names; and the name of the storage object. If no directory names are
provided, the storage object resides in the root directory of the specified media.

abs_path = "/" media ["/" | ("/" directory)* ["/" storage_object]]

media = 1*pchar

directory = 1*pchar

storage_object = 1*pchar

pchar = unreserved | escaped

unreserved = alphanum | mark

mark = "-" | "_" | "."

escaped = "%" hex hex

hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f"

alphanum = alpha | digit

alpha = lowalpha | upalpha

lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 16 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

7. Management

7.1. Delete
The base level persistent storage system offers the remove function to delete individual storage objects and individual
directories (excluding the root directory). The remove function MUST NOT be capable of deleting a storage medium.

When a directory is specified, remove MUST delete all of the storage objects and sub-directories that are contained in
the directory, as well as the respective directory. Storage objects that are stored in the root directory MAY be deleted,
but the root directory itself MUST NOT be deleted.

The remove function requires an explicit directory or storage object name and MUST NOT accept wildcards. It
operates on a single storage element, except when deleting a directory, which then would als o include the contents of
the directory.

7.2. Transaction Semantics
The base level persistent storage system does not specify, nor require, any sophisticated transaction semantics. In
particular, support for traditional transaction concepts such as concurrency, recovery and isolation are beyond the scope
of this base level specification.

An implementation of the base level persistent storage system MUST ensure that when a storage object is updated, the
specified update MUST entirely succeed. Otherwise, in the event when an update to a storage object fails, the storage
system MUST restore the storage object to its original contents and return an appropriate error.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 17 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

8. Security
The base level storage system does not offer any specific security features or mechanisms. Developers are warned that
this specification is absent any protocols or mechanisms (such as library functions or function arguments) that could be
used to provide security features such as identity, access controls and data integrity.

Security has been omitted from this specification because security mechanisms are dependent on a scheme that should
be consistent across other application services and therefore cannot be defined within the scope of this specification.

When access to a storage element is denied due to any of the security mechanisms that are implemented by the
underlying storage device, access to that storage element MUST be denied and an “Unauthorised” (401) error MUST be
returned.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 18 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

9. Error Handling
The persistent storage system follows the error handling scheme that is defined in the WMLScript language (see
[WMLS] for more details):

• An invalid function argument MUST result in the return value of invalid with no side effects (unless explicitly
stated otherwise).

• A function argument that cannot be converted to the required parameter type MUST result in the return value
of invalid with no side effects.

• Storage system library functions MUST indicate function dependent errors by returning invalid and making the
applicable status code that is specified in each function definition available to the getStatus() function.

• The getStatus() function is used to return a text string that contains the status code and a brief description of
the status code.

• The status codes for each function are documented below as part of the function’s specification.

• Function status codes MUST follow the status code conventions described in the HTTP1.1 RFC [RFC2616]
where appropriate. When necessary, extended status codes are provided that adhere to the format of
[RFC2616] and are specific to this library.

• Failures resulting when a store fills to capacity, MUST terminate the current storage operation, return invalid,
and make the status code available through the getStatus() function.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 19 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10. Library Functions

10.1. Library

NAME: Pstor

LIBRARY ID: 9

DESCRIPTION: This library contains a basic set of functions for managing persistent storage primitives.

WAP client devices that provide support for the Pstor library and user agent profiling [UAPROF], MUST indicate
support for the Pstor library through the device’s capability profile.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 20 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.2. Miscellaneous Services

10.2.1. enum
Function: enum(parentName, lastElement)

Function ID: 0

Description: Individually enumerates each specified storage element type under the specified parent.

This function is used to discover the indicated storage element types that are children of
the specified parent.

Parameters: parentName = String

lastElement = String

The parentName parameter is a URI string that forms a fully qualified absolute name
string that identifies the parent of the storage elements that are to be enumerated.
Possible values include:

• the storage medium and directory name for storage objects (e.g.
wps:/FLASH/myObjects)

• the storage medium name for directories (e.g. wps:/BRAM)

• the empty string for storage medium (“”)

Pass an empty string to lastElement to request the first storage element’s name. On
successive calls, pass the last element name that was retrieved in the previous call.

Return value: Type: String

Returns the name of the next storage element of the specified storage element type.
Returns an empty string when the storage element list is exhausted.

If no storage elements are present, then this function returns an empty string as if it
reached the end of the storage element list.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

Notes: 1. The name returned by enum can be used to query attributes of the storage element.

2. The results of the enumeration function will not be deterministic when the series is
interrupted by calls to other persistent storage operations. (e.g. Calls to create or
remove may disrupt the process of enumerating all of the storage objects in a
directory, resulting in the possibility that some of the storage elements may be
missed.)

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 21 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Example:

// iterate through the list of available storage media
var name = Pstor.enum(“”, “”);
 while (!isNull(name) && isvalid name)
 {
 ... // do something with the name
 name = Pstor.enum(“”, name);
 }

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 22 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.2.2. getStatus
Function: getStatus()

Function ID: 1

Description: Retrieves the status code and error message, as defined in [RFC2616], from the last
function called (excluding this function).

Parameters: None

Return value: Type: String

Error messages are formatted as specified in HTTP 1.1 [RFC2616].

Status Codes: None; this function MUST NOT fail.

Notes: 1. If no library function has been called prior to calling getStatus(), then the text string
that is returned MUST be “200 OK”.

2. Once any other library function has been called, getStatus() MUST return the status
code that was generated by the last library function called.

3. Successive, uninterrupted calls to getStatus() MUST return the same result because
getStatus() does not modify the status code.

Example:

// Intentionally create an error and then retrieve the resulting status
code.
var val = enum(invalid, invalid);

var error = getStatus();
// error is now “450 Invalid Input”

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 23 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.3. Storage Primitive Manipulation

10.3.1. create
Function: create(name, objType)

Function ID: 2

Description: Creates a named storage element in the persistent store.

Parameters: name = String

objType = String

The name parameter is a URI string that forms a fully qualified absolute name to
identify the new storage element.

objType is defined as one of the following:

• “Directory” – creates a directory

• “StorageObject” – creates a storage object

Return value: Type: String

Returns the status of the operation. invalid is returned on error, and a call to the
getStatus() function will return the appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

550 Media Full

Notes: 1. When a new storage object is created, the default value for ContentType is
“text/plain”.

Example:

// Create a storage object named: "wps:/SRAM/personal/entry1"

status = Pstor.create("wps:/SRAM/personal/entry1", "StorageObject");

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 24 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.3.2. remove
Function: remove(name)

Function ID: 3

Description: Removes the named directory or storage object from the persistent store.

Parameters: name = String

The name parameter is a URI string that forms a fully qualified absolute name to
identify the storage element that is to be permanently removed from the persistent
store.

Return value: Type: Boolean

Upon success the value true is returned. false is never returned by this function
because all errors force the return of invalid.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

Notes: 1. This function only removes the single storage element that is named in the name
parameter.

2. When a directory is removed, all of the storage objects and sub-directories that are
contained in that directory will also be removed.

3. The contents of the root directory may be deleted but it is not possible to delete
the root directory.

4. A “Bad Request” exception code is returned when the storage element that is
named in the name parameter references a storage medium.

Example:

//remove the storage object named “wps:/EEPROM/ab/personal.obj”

result = Pstor.remove(“wps:/EEPROM/ab/personal.obj”);

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 25 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.4. Attribute Manipulation
The characteristics of each storage element are described using attributes.

Attributes MUST adhere to the following rules:

1. The basic calendar format “CCYYMMDDThhmmssZ”, which is specified in [ISO8601], MUST be used when
specifying date attributes.

2. The names of all attributes MUST be case insensitive.

Table 10-1 contains the attributes that are used to describe storage media.

Table 10-1. Storage System Defined Storage Medium Attributes

Attribute Name Description Format Modification
Property

Mandatory/Optional

AvailableSize Identifies the size in bytes of the
available storage space currently
remaining on the storage medium.

Integer Read Only Optional

CreationDate The date that the storage medium
was created (this value is the date
that the root directory was
created).

String Read Only Optional

LastModifiedDate The date that the storage medium
was last modified.

String Read Only Optional

MaximumDirectoryLevels Specifies the maximum number of
directory levels that the storage
media is capable of supporting.

Integer Read Only Mandatory

StorageType Identifies the type of storage
medium of the device. This value
comes from WAP’s list of well-
known storage medium types.

String Read Only Mandatory

SupportsCreateDirectory Indicates whether the storage
medium supports the creation of
new directories.

Boolean Read Only Mandatory

WriteLocked Identifies whether writes to the
device are permitted or prohibited.
The operation of locking a storage
medium is performed outside the
storage system and no mechanism
is provided to allow WAE
applications to lock or unlock a
storage medium.

Boolean Read Only Mandatory

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 26 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Table 10-2 contains the attributes that are used to describe directories.

Table 10-2. Storage System Defined Directory Attributes

Attribute Name Description Format Modification
Property

Mandatory/
Optional

CreationDate The date that the directory was created. String Read Only Optional

LastModifiedDate The date that the directory was last modified. String Read Only Optional

Table 10-3 contains the attributes that are used to describe a storage object.

Table 10-3. Storage System Defined Storage Object Attributes

Attribute Name Description Format Modification
Property

Mandatory/Optional

ContentType Uses the MIME format to describe the
general type and specific format of the
data contained in the storage object
[RFC2046].

Note: When a new storage object is
created, the default value for
ContentType is “text/plain”.

String Read/Write Mandatory

CreationDate The date that the storage object was
created.

String Read Only Optional

LastModifiedDate The date that the storage object was
last modified.

String Read Only Optional

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 27 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.4.1. getAttribute
Function: getAttribute(name, attributeName)

Function ID: 4

Description: Gets the named attribute from the specified storage element.

Parameters: name = String

attributeName = String

The name parameter is a URI string that forms a fully qualified absolute name that
identifies the target storage element.

The attributeName parameter is the attribute name that is specified in:

− Table 10-1 for storage media

− Table 10-2 for directories

− Table 10-3 for storage objects

Return value: Type: Any

Returns the value of the attribute in the form that it was stored.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

451 Input Not Supported

Notes: 1. Attribute names are case insensitive.

2. An error results when an optional attribute is requested that is not supported by the
specified media or particular implementation.

Example:

// get the date that the storage object named
// “wps:/BRAM/ab/personal.obj” was last modified

var lastModifiedDate = Pstor.getAttribute(“wps:/BRAM/ab/personal.obj”,
 “LastModifiedDate”);

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 28 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.4.2. setAttribute
Function: setAttribute(name, attributeName, value)

Function ID: 5

Description: Sets the named attribute for the specified storage element.

Parameters: name = String

attributeName = String

value = String

The name parameter is a URI string that forms a fully qualified absolute name that
identifies the target storage element.

The attributeName parameter is the attribute name that is specified in:

• Table 10-1 for storage media

• Table 10-2 for directories

• Table 10-3 for storage objects

The value parameter is the actual value to store into the attribute.

Return value: Type: Boolean

Upon success the value true is returned. false is never returned by this function
because all errors force the return of invalid.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

451 Input Not Supported

Notes: 1. Attribute names are case insensitive.

2. An error results when an optional attribute is requested that is not supported by the
specified media or particular implementation

Example:

// set the content type of the storage object named
// “wps:/BRAM/ab/my.obj” to “image/jpeg”
result = Pstor.setAttribute(“wps:/BRAM/ab/my.obj”, “ContentType”,
 “image/jpeg”);

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 29 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.5. Data Manipulation
The data that is contained in a storage object is stored and managed using data manipulation functions.

10.5.1. getDataSize
Function: getDataSize(name)

Function ID: 6

Description: Returns the size (in bytes) of the data that is stored in the storage object.

Parameters: name = String

The name parameter is a URI string that forms a fully qualified absolute name that
identifies the target storage element.

Return value: Type: Integer

Returns the size – in bytes – of the data that is stored in the storage object.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

Notes: 1. The return value contains only the size of the stored data. It does not include the
quantity of storage space used for the storage object’s attributes or any additional
overhead.

Example:

//Read the size of the data that is stored in the storage object
// that is named “wps:/FLASH/ab/personal.obj”

size = Pstor.getDataSize(“wps:/FLASH/ab/personal.obj”);

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 30 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.5.2. getData
Function: getData(name, offset, size)

Function ID: 7

Description: Retrieves a portion or all of the data that is stored in the specified storage object.

Parameters: name = String

offset = Integer

size = Integer

The name parameter is a URI string that forms a fully qualified absolute name that
identifies the target storage element.

offset determines the position within the attribute to begin retrieving information from,
in bytes. offset is zero-based (the first data byte is numbered 0, the second is
numbered 1, etc.)

If offset is beyond the size of the stored data, the result is a zero length string.

size is the maximum number of bytes to retrieve:

 Use 0 to return a zero-length string.

 Use -1 to return all of the data.

Return value: Type: String

A string containing the data that is stored in the specified storage object.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

Notes: None

Example:

// Read 3 bytes from the beginning of the data that is stored in the
// storage object named “wps:/EEPROM/ab/personal.obj” that contains the
// string “214-555-1212”

areaCode = Pstor.getData(“wps:/EEPROM/ab/personal.obj”, 0, 3);
 // the variable areaCode now contains the string “214”

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 31 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.5.3. setData
Function: setData(name, value, offset)

Function ID: 8

Description: Sets a portion or all of the data that is stored in the storage object.

Parameters: name = String

value = String

offset = Integer

The name parameter is a URI string that forms a fully qualified absolute name that
identifies the target storage element.

The value parameter is the actual data to store into the storage object.

The offset parameter determines the position within the attribute to start modifying
information, in bytes. offset is zero-based (the first data byte is numbered 0, the
second is numbered 1, etc.)

Return value: Type: Boolean

Upon success the value true is returned. false is never returned by this function
because all errors force the return of invalid.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

550 Media Full

Notes: 1. If offset specifies a location that is beyond the size of the storage object, an error
occurs and invalid is returned.

2. The setData function does not buffer writes. All changes are made to the storage
object before the function returns.

Example:

//set the contents of the storage object named
// “wps:/BRAM/ab/personal.obj” to “John Jones”

result = Pstor.setData(“wps:/BRAM/ab/personal.obj”, “John Jones”, 0);

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 32 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

10.5.4. setDataSize
Function: setDataSize(name, size)

Function ID: 9

Description: Truncates or extends the total size (measured in bytes) of the data space of the
specified storage object.

Parameters: name = String

size = Integer

The name parameter is a URI string that forms a fully qualified absolute name that
identifies the target storage element.

The size parameter specifies the size in bytes of data stored.

Return value: Type: Boolean

Upon success the value true is returned. false is never returned by this function
because all errors force the return of invalid.

invalid is returned on error, and a call to the getStatus() function will return the
appropriate status code and message.

Status Codes: 200 Ok

400 Bad Request

401 Unauthorised

404 Not Found

450 Invalid Input

550 Media Full

Notes: 1. When the size of the storage object’s data is extended, the content of the added
data space is undefined.

Example:

// Reserve 50 bytes of storage space in a new storage object named
// “wps:/EEPROM/ab/entry”

result = Pstor.setDataSize(“wps:/EEPROM/ab/entry”, 50); // the data size
 // is now 50 bytes

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 33 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Appendix A. Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [CREQ].

WMLScript Compiler and Encoders
Item Function Reference Status Requirement

PSTOR-S-000 Support for Pstor library 10.1 M WMLScript:MSF

PSTOR-S-001 Support for enum()
function

10.2.1 enum M

PSTOR-S-002 Support for getStatus()
function

10.2.2 getStatus M

PSTOR-S-003 Support for create()
function

10.3.1 create M

PSTOR-S-004 Support for remove()
function

10.3.2 remove M

PSTOR-S-005 Support for
getAttribute() function

10.4.1 getAttribute M

PSTOR-S-006 Support for
setAttribute() function

10.4.2 setAttribute M

PSTOR-S-007 Support for
getDataSize() function

10.5.1 getDataSize M

PSTOR-S-008 Support for getData()
function

10.5.2 getData M

PSTOR-S-009 Support for setData()
function

10.5.3 setData M

PSTOR-S-010 Support for
setDataSize() function

10.5.4 setDataSize M

PSTOR-S-011 Support for storage
media

5.2 Storage Medium M

PSTOR-S-012 Support for directories 5.3 Directories M

PSTOR-S-013 Support for storage
objects

5.4 Storage Objects M

PSTOR-S-014 Use persistent storage
URI syntax

6 Naming M

PSTOR-S-015 Use absolute path 6 Naming M

PSTOR-S-016 Support for delete 7.1 Delete M

PSTOR-S-017 Support for transaction
semantics

7.2 Transaction
Semantics

M

PSTOR-S-018 Support for security 8 Security M

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 34 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Item Function Reference Status Requirement

PSTOR-S-019 Support for error
handling

9 Error Handling M

PSTOR-S-020 Support for attribute
manipulation

10.4 Attribute
Manipulation

M

WMLScript Bytecode Interpreter
Item Function Reference Status Requirement

PSTOR-C-000 Support for Pstor library 10.1 M WMLScript:MCF

PSTOR-C-001 Support for enum()
function

10.2.1 enum M

PSTOR-C-002 Support for getStatus()
function

10.2.2 getStatus M

PSTOR-C-003 Support for create()
function

10.3.1 create M

PSTOR-C-004 Support for remove()
function

10.3.2 remove M

PSTOR-C-005 Support for
getAttribute() function

10.4.1 getAttribute M

PSTOR-C-006 Support for
setAttribute() function

10.4.2 setAttribute M

PSTOR-C-007 Support for
getDataSize() function

10.5.1 getDataSize M

PSTOR-C-008 Support for getData()
function

10.5.2 getData M

PSTOR-C-009 Support for setData()
function

10.5.3 setData M

PSTOR-C-010 Support for
setDataSize() function

10.5.4 setDataSize M

PSTOR-C-011 Support for storage
media

5.2 Storage Medium M

PSTOR-C-012 Support for directories 5.3 Directories M

PSTOR-C-013 Support for storage
objects

5.4 Storage Objects M

PSTOR-C-014 Use persistent storage
URI syntax

6 Naming M

PSTOR-C-015 Use absolute path 6 Naming M

PSTOR-C-016 Support for delete 7.1 Delete M

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 35 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Item Function Reference Status Requirement

PSTOR-C-017 Support for transaction
semantics

7.2 Transaction
Semantics

M

PSTOR-C-018 Support for security 8 Security M

PSTOR-C-019 Support for error
handling

9 Error Handling M

PSTOR-C-020 Support for attribute
manipulation

10.4 Attribute
Manipulation

M

PSTOR-C-021 Support for UAProf 10.1 O UAProf:MCF AND PSTOR-
C-022

PSTOR-C-022 Advertise device
capability using UAProf

10.1 O

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 36 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Appendix B. Change History (Informative)
Type of Change Date Section Description
Class 0 30-May-2001 The initial version of this document.

Class 3 20-December-2001 Appendix A Incorporated WAP-227_100-PSTOR-20011109-a to fix SCR table

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 37 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Appendix C. Implementation Notes (Informative)
The following implementation notes are intended to assist the implementer in the design of this library.

1. Access control security may be implemented as a layer above the base level persistent store.

2. It is strongly recommended that special considerations be given in the design of the storage system to optimise
the use of storage resident on the client device.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 38 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Appendix D. Application Developer Notes (Informative)
The following notes are intended to assist developers in writing applications that use the persistent storage system.

1. It is suggested that applications use distinctive names for directories to avoid name collisions.

2. It is suggested that applications check the result of each library function call for the return value invalid. When
invalid is returned, the function getStatus() should be used to determine the cause of the error.

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 39 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

Appendix E. Code Example (Informative)
An application that displays a persistently stored list of user specified stocks:

// Assume that there are stocks in the store already.
// Functionality would need to be added to allow the user to modify the
// list of stocks.

//
// Get the stock names and prices to display to the user.
//
var stock = Pstor.enum("wps:/FLASH/stocks", "");
var price = Pstor.getData("wps:/FLASH/stocks/" + stock,
 "0", "-1");
var prices = stock + ":" + price;
var stocks = stock;
var done = false; // have we gotten all the stocks?
var count = 1; // count of stocks retrieved

while (!done && isvalid stock)
{
 stock = Pstor.enum("wps:/FLASH/stocks", stock);
 if (isvalid stock && !String.isEmpty(stock))
 {
 var price = Pstor.getData("wps:/FLASH/stocks/" + stock,
 "0", "-1");
 prices += "," + stock + ":" + price;
 stocks += "," + stock;
 count++;
 }
 else
 {
 done = true;
 }
}

WAP-227-PSTOR-20011220-a, Version 20-December-2001 Page 40 (40)

 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

// See if the user wants to get updated stock prices.
//
update = Dialogs.confirm(prices, "Get Update", "Cancel");
if (update == true)
{
 // Retrieve the stock prices from the stock service
 // and display the prices to the user, e.g.
 // http://quotes.com?stocks=ACME,LJRT,XSRD
 //
 stocks = URL.loadString("http://quotes.com?stocks=" + stocks,
 "text/plain");
 Dialogs.alert(stocks);

 // Put the updated stock prices in the persistent storage
 //
 for (i = 0; i < count; i++)
 {
 // Format of the quotes provided by quote.com is
 // <name>:<price>,<name>:<price>, ...
 //
 var stock_price = String.elementAt(stocks, i, ",");
 var stock = String.elementAt(stock_price, 0, ":");
 var price = String.elementAt(stock_price, 1, ":");
 var length = String.length(price);

 // Update the storage object data and trim to
 // remove any leftover stock price data.
 //
 Pstor.setData("wps:/FLASH/stocks/" + stock,
 price, "0");
 Pstor.setDataSize("wps:/FLASH/stocks/" + stock,
 length);
 }
}

