
 Session Capabilities in OBEX

Version 0.14

July 16, 2002

Authors:

David Suvak Extended Systems
Contributors:

Kevin Hendrix Extended Systems

Revision History

Revision Date Comments

0.1 30-May-01 Initial Draft

0.11 12-July-01 Fixed document based on comments received. Added
examples, flushed out algorithms, specified additions to
Capability Object.

0.12 12-Sept-01 Change the multiple transport issue into a proposal that is not
considered part of the errata proposal.

0.13 4-Oct-01 Changed the sequence number to wrap at 255 instead of 8

0.14 16-July-02 Moved the Session Opcode out of the OBEX Session
command and into the Session Parameters header to assure
interoperability with legacy OBEX devices that might not
understand the new OBEX Session command format. Also
changed the Session-Parameters header to 0x52 and the
Session-Sequence-Number header to 0x93 to avoid conflict
with the existing OBEX 1.2 errata.

Introduction
A number of applications and services built on OBEX desire the ability to recover an OBEX session that
has been broken due to loss of the underlying transport (e.g. IrLAP link loss). Examples include restarting a
file transfer and resuming a sync session. The Infrared Financial Messaging (IrFM) group also has
determined the need to maintain an OBEX session when the IrLAP link is lost. This document contains a
proposal for providing reliable session support in OBEX. This proposal is aimed at meeting the needs of
IrFM but should provide enough capabilities to meet the needs of other services and applications. A list of
desired features for an OBEX session layer is given below.

• Allow an OBEX session to be resumed without loss of data when the underlying transport layer is lost.
• Allow OBEX applications and services to suspend a session and later resume it.
• Provide indications to applications and services about loss of the underlying transport connection.
• Provide the ability to automatically resume the session including restarting the lower level transports

without burdening the applications or services.
• Allow existing services such as the Inbox, File transfer, IrMC, etc. to have session support.
• Allow multiple directed connections to be started and stopped within a single session.

A lower priority feature is listed below.

• Ability to start a session on one transport and move it to another transport (e.g. start the OBEX session
on IrDA and move it to Bluetooth).

OBEX Session Overview

The OBEX specification divides OBEX into two parts: a model for representing objects and a session
protocol. The session protocol uses a binary packet-based client/server request-response model. The session
protocol defines the basic structure of an OBEX conversation and includes a set of commands to perform
specific actions such as PUT and GET. The OBEX conversation occurs within the context of an OBEX
connection. The OBEX session protocol runs on top of a transport layer such as TinyTP in IrDA,
RFCOMM in Bluetooth or TCP. Currently, when the underlying transport is disconnected the OBEX
session is lost. This document describes a solution, which allows OBEX to maintain the session when the
underlying transport is lost. Before describing this solution it is necessary to review the current OBEX
session protocol. The table below describes the elements of the OBEX session layer protocol and
application framework.

Element Description
OBEX Client An OBEX Client is the entity that initiates OBEX operations. The OBEX client

also typically initiates the underlying transport connection to an OBEX server.

OBEX Server An OBEX Server is the entity that responds to OBEX operations. The OBEX
server typically waits for the OBEX client to initiate the underlying transport
connection. However, in some cases the OBEX server may initiate the transport
connection to an OBEX client (e.g. IrFM).

Default OBEX Server The Default OBEX server is the server that resides at the LSAP-Sel specified in the
OBEX IAS definition. Other OBEX servers can exist but the Default OBEX server
is the “well known” server. This is analogous to the HTTP server located at TCP
port number 80.

OBEX Transport
Connection

The OBEX transport connection is the underlying transport connection, which
carries the OBEX protocol.

OBEX Connection An OBEX Connection is a virtual binding between two applications or services. An
OBEX connection is initiated by sending an OBEX CONNECT packet. Once a
connection is established all operations sent over the connection are interpreted in a
continuous context.

Directed Connection A directed connection is one where the OBEX CONNECT packet contains
targeting information which the OBEX protocol uses to connect the client to its
intended service or application.

The Inbox Connection The inbox connection is the OBEX connection made to the default OBEX server,
where the OBEX CONNECT packet does not contain targeting information. A
number of services can be accessed via the inbox connection. These services are
described later.

Inbox The inbox is the intended recipient of a client push operation over the Inbox
Connection. The inbox does not have to be an actual storage location. It is really a
method for encapsulating the concept that the client pushes an object to a recipient
without the need to understand the details of how the recipient stores the object.

Application An OBEX application communicates using a proprietary method known only by
the manufacturer. Such applications can only expect to be understood by exact
peers. Alternatively, an application may be a service with proprietary extensions. In
this case the application must know if it is communicating with a service or
application peer.

Service An OBEX service communicates using procedures specified in a publicly available
standard, such as in IrMC or this specification.

Capability Service The capability service is used to find information about the OBEX server including
device information, types of objects supported, object profiles and supported
applications.

When the OBEX client creates an OBEX Transport Connection to the OBEX Server, an implicit OBEX
session is created. A connection-oriented session can be created by sending an OBEX CONNECT
command. An implicit OBEX session exists because it is possible to send directed commands to a service
without creating a directed connection to it first. Connection-oriented sessions created using the OBEX
CONNECT command are also called OBEX Connections. In the case of the Default OBEX Server,
sending an OBEX CONNECT command without a Target header creates a connection to the Inbox
service. This connection is called the Inbox connection and there are a number of services, which utilize
this connection. A Directed Connection is made by sending an OBEX CONNECT command with a
Target header containing the ID of the desired service or application.

The Default OBEX Server resides at a well-known location. The method for finding the Default OBEX
Server is dependent on the underlying transport being used. OBEX applications can use Directed
Connections on the Default OBEX Server or they can use there own OBEX server which runs over a
different OBEX transport connection from the one used by the Default OBEX Server.
Currently, the implicit OBEX session created when an OBEX Client initiates an OBEX Transport
connection is only reliable as long as the OBEX Transport connection exists. When the underlying
transport connection is disconnected the OBEX session fails. It is desired to have reliable OBEX sessions,
which can be resumed when the underlying transport connection is broken. Given this context (broken
OBEX Transport Connection), the implicit OBEX session described in the current OBEX specification is
considered unreliable. The picture below shows the current architecture as it sits on IrDA.

IrLAP

Tiny TP / Ultra Transports

IrLMP LM-MUX

IAS
Service

The Wide World
of Applications

OBEX Application
Framework

OBEX Applications
and Services

Connection Oriented OBEX Sessions

Implicit OBEX Session (unreliable)

The next section describes a method for creating reliable OBEX sessions.

Reliable OBEX Session Overview
When the OBEX Client initiates the underlying transport connection to the OBEX Server it creates an
unreliable implicit OBEX session. Any connection-oriented sessions made on top of this implicit session
are also unreliable. This document proposes that reliable OBEX connections can be built by creating a
reliable underlying session. The OBEX client can create a reliable session by sending a new OBEX
command called CREATESESSION. In order to be able to reestablish the reliable session when the
underlying transport breaks it is necessary for the session to have a Session ID that is known by both the
OBEX Client and Server. This Session ID must be unique enough such that both the Client and the Server
know they are resuming the same session. It is also necessary that the Client and Server know enough
information about each other so that the underlying transport can be reestablished. In the case of IrDA this
would be the 32-bit device address. Until a reliable session is established the unreliable implicit session is
active. The list below outlines the concepts of a reliable OBEX Session.

• New OBEX commands are created for managing reliable sessions. These are CREATESESSION,
CLOSESESSION, SUSPENDSESSION, RESUMESESSION and SETTIMEOUT.

• New OBEX headers are created to be used with the new commands and features. These are Session-
Parameters and Session-Sequence-Number.

• When a reliable session is established a session ID is created that is known by both the Client and the
Server. This ID must be unique enough such that the reliable session can be reestablished. When the
underlying transport is broken under a reliable session, the session is considered suspended.

• The session context must be saved in order to resume a session when the underlying transport is
broken.

• Applications/services must also maintain context in order to resume a session.
• Only one session can be active at a time per OBEX transport connection. When the OBEX transport

connection is first established the unreliable implicit session is active. Multiple sessions can exist
between devices but only one can be active at a time. The other sessions are considered suspended
including the unreliable session. If the underlying transport is broken the unreliable session is broken
as well.

• Any number of connection-oriented sessions (OBEX connections) can be made within a reliable
session.

• The OBEX Capability Object can be accessed via any underlying session including the unreliable
session.

• To facilitate reliability, the session layer must ensure reliable transfer of OBEX packets. To achieve
this a header containing sequence numbers is added to each OBEX packet. If an OBEX packet is lost it
will be retransmitted. This will occur only when a session is resumed since OBEX packets can only be
lost when the underlying transport is lost (OBEX requires a reliable transport).

• Since OBEX packets are large, retransmission should only be used if the packet was actually lost. It is
possible that the server received a command but the client did not receive the response. A method
exists to allow the server to indicate the last packet received during session resume. The client can then
send an empty packet (command without headers) to facilitate retransmission of the response.

The picture below shows how a reliable sessions fit into the architecture.

IrLAP

Tiny TP / Ultra Transports

IrLMP LM-MUX

IAS
Service

The Wide World
of Applications

OBEX Application
Framework

OBEX Applications
and Services

OBEX Connections

Implicit Unreliable/Reliable OBEX Sessions

New OBEX Headers
The two new headers being proposed are as follows:

HI – identifier header name Description
0x52 Session-Parameters Parameters used in session commands/responses
0x93 Session-Sequence-Number Sequence number used in each OBEX packet for reliability.

Session-Parameters
Session-Parameters is a byte sequence that is required for the CREATESESSION, CLOSESESSION,
SUSPENDSESSION, RESUMESESSION and SETTIMEOUT commands and the responses to these
commands. It contains a set of parameters, which are specific to the command in which the header is used.
If required, the Session-Parameters must be the first header in a SESSION command or response. In
addition, for SESSION commands only, the Session Opcode must be the first tag-length-value triplet
within the Session-Parameters header.

A Tag-Length-Value encoding scheme is used to support a variety of parameters. A Session-Parameters
header may contain more than one tag-length-value triplet. The header format is shown below:

Parameter Triplet 1 Parameter Triplet 2 Parameter Triplet . . .
Tag1 Length Value Tag2 Length Value Tag Length Value

The tag and length fields are each one byte in length. The value field can be from zero to n bytes long. The
value n is constrained by the maximum size of an OBEX Packet, which at this point is 255 bytes, the length
field maximum of 255 bytes and the size of other TLV-triplets encoded in the header.

The following TAG values are defined.

Tag
Value

Name Meaning

0x00 Device Address The device address of the device sending the header. If running over IrDA this is the
32-bit device address. For Bluetooth this is the 48-bit Bluetooth address. If Running
over TCP/IP this is the IP address.

0x01 Nonce The nonce is a value provided by the device, which will be used in the creation of the
session ID. This number must be unique for each session created by the device. One
method for creating the nonce is to start with a random number then increment the
value each time a new session is created. The Nonce should be at least 4 bytes and at
most 16 bytes in size.

0x02 Session ID Session ID. This is a 16-byte value, which is formed by taking the device address and
nonce from the client and server and running the MD5 algorithm over the resulting
string. The Session ID is created as follows: MD5(“Client Device Address” “Client
Nonce” “Server Device Address” “Server Nonce”)

0x03 Next Sequence
Number

This is a one-byte value sent by the server, which indicates the next sequence number
expected when the session is resumed.

0x04 Timeout This is a 4-byte value that contains the number of seconds a session can be in suspend
mode before it is considered closed. The value of 0xffffffff indicates a timeout of
infinity. This is the default timeout. If a device does not send a timeout field then it
can be assumed that the desired timeout is infinity. The timeout in affect is the
smallest timeout sent by the client or server.

0x05 Session Opcode The session opcode is a 1-byte value sent by the client to indicate the Session
command that is to be performed. This tag-length-value is only sent in SESSION
commands and must be the first tag in the Session-Parameters header. The session
opcode definitions are defined in the bulleted list below.

0x06 -
0xff

Reserved

Session Opcode Definitions:
• 0x00 Create Session
• 0x01 Close Session
• 0x02 Suspend Session
• 0x03 Resume Session
• 0x04 Set Timeout
• 0x05 – 0xFF Reserved

Generating a Session ID
The purpose of the Session ID is to uniquely identify the session. The Session ID is used when closing and
resuming sessions. Both the client and the server want to be certain that the remote device is referring to the
same session when issuing commands, especially when resuming a suspended session. Both the client and
the server provide information used to generate the Session ID. This helps to make certain that the Session
ID is unique. Each device provides two pieces of information. The first is its Device Address. In the case of
IrDA this is the 32-bit device address, which is not guaranteed to be unique. The second is a Nonce, which
must be unique for the given device. Given that the Nonce is unique as far as each device is concerned and
that the device addresses are reasonably unique (even in the case of IrDA) the resulting Session ID has a
high probability of being unique.

The Session ID is generated by applying the MD5 algorithm to the string created by concatenating the
Client Device Address, Client Nonce, Server Device Address and Server Nonce. The reason for applying an
algorithm such as MD5 is so that the size of Session IDs is fixed (16 bytes). Device Addresses and Nonces
can very in size so the MD5 algorithm is used to produce a 16-byte quantity. The MD5 algorithm was
designed to produce a unique number given a string or file. MD5 was chosen since it is used in the OBEX
authentication procedure and was very likely to already be present in an OBEX implementation.

Negotiating Timeouts
All commands except CLOSESESSION involve timeout negotiation. Timeout negotiation is simple. Each
time a Session Command exchange occurs (except CLOSESESSION) both sides take the smallest timeout
values sent and use that as the new timeout for the session. If a timeout value is not explicitly sent it is
assumed that the device is requesting an infinite timeout.

Session-Sequence-Number
Session-Sequence-Number is a 1-byte quantity containing the current sequence number. Even though
OBEX is a command/response protocol and only one outstanding command can exist at any given time, the
counting capacity of the sequence number is 256 using digits 0 – 255 (0xFF). At 255 the sequence number
wraps around to 0. This adds another level of verification that the correct session is being resumed. If the
sequence number is invalid then the session should be aborted. This procedure should be followed both
when the session is being resumed and during an active session.

When the session is first created the Session-Sequence-Number number is set to 0. The first command
packet sent by the client after the session is established will contain a Session-Sequence-Number header
with value of 0. The response to this packet from the server contains the next packet number expected. If
the packet was received successfully then the value of the Session-Sequence-Number header in the
response would be 1.

The Session-Sequence-Number must be the first header. The OBEX specification indicates that the
Connection-ID header must be the first header so there appears to be conflict. Since the new reliable
session features sit below the standard OBEX parser, the reliable session could be considered a lower layer
protocol. Thus, session information should be stripped off before being sent up to the OBEX parser. The
standard OBEX parser will not see the Session-Sequence-Number header and the Connection ID header
will appear to be the first header when it exists.

Session-Sequence-Number headers are not used in Session commands or responses. Thus, session
numbers are not advanced when sending session commands/responses when a reliable session is active.

New OBEX Commands
The method proposed to add new session commands is to create one new OBEX command called
SESSION. The SESSION request is formatted as follows:

Byte 0 Bytes 1, 2 Bytes 3 to n
0x87

(Final bit set)
Packet length Sequence of headers. Session-Parameters must be

the first header in the sequence.

The positive response to a SESSION request is 0xA0 (Success, with the high bit set. Any failure response
code can be used to indicate a negative response. Certain types of failures and the corresponding failure
codes are described in the sections corresponding to each session command. The format of the response is
as follows:

Byte 0 Bytes 1, 2 Bytes 3 to n
response code Response packet length Optional sequence of response headers. If the

Session-Parameters is used it must be the first
header in the sequence.

CREATESESSION
The CREATESESSION command is sent by the Client to create a new session. This command must
include a Session-Parameters header containing the Session Opcode, Device Address and Nonce fields.
Optionally, a Timeout field can be included. The successful response to CREATESESSION is 0xA0
(Success, with the high bit set) in the response code followed by a Session-Parameters header containing
Device Address, Nonce, and Session ID fields. The client should verify that it creates the same session ID
as sent by the server. If the Session ID does not match then the client should close the session by using the
CLOSESESSION command otherwise the session is considered active.

The CREATESESSION command and response must fit in a single OBEX packet of size 255 bytes
(default maximum size) and have their Final bits set.

Only one session can be in the active state per transport connection. If a reliable session is already active a
second request should be rejected using the 0xC3 (Forbidden) response. To switch sessions the current
session must first be suspended. A server is not required to maintain multiple sessions at the same time. All
servers will have some maximum number of suspended sessions they can maintain. At some point a server
will receive a CREATESESSION request that will exceed this maximum number. The server can either
reject the new request or close an existing session and accept the new request. The correct response
depends on how long the existing sessions have been suspended. The server may want to prompt the user if
it cannot decide on its own. A proposal for an algorithm is given in the next paragraph. If a
CREATESESSION request is rejected because the maximum number of sessions already exists then the
proper response is 0xD3 (Service Unavailable).

When a server receives a CREATESESSION request that exceeds the maximum number of sessions
supported the following algorithm can be used.

1. Keep all suspended sessions with infinite timeouts on a sorted list by time suspended. The session with
the longest time is at the front of the list.

2. Sessions with timeouts less then infinite should not be closed until the timeout occurs.
3. When a CREATESESSION request occurs exceeding the maximum number of sessions, the server

should check the suspended session list. If the list is not empty the first session on the list is removed.
This session is closed and its resources are used for the new session. If the list is empty the incoming
CREATESESSION request is rejected.

CLOSESESSION
CLOSESESSION is used to gracefully close an existing session. This command must include a Session-
Parameters header containing the Session Opcode and Session ID fields. The value of the Session ID field
is the one sent by the server in the response to the CREATESESSION command corresponding to the
session being closed. The successful response to CLOSESESSION is 0xA0 (Success, with the high bit set)
in the response code. The CLOSESESSION command can be used to close the active session or any
suspended sessions.

The CLOSESESSION command and response must fit in a single OBEX packet and have their Final bits
set.

The CLOSESESSION command cannot be rejected if the Session ID corresponds to a valid session. If the
Session ID does not correspond to a valid session then the proper response is 0xC3 (Forbidden). If the
active session is closed the unreliable session becomes the active session.

SUSPENDSESSION
SUSPENDSESSION is used to gracefully suspend the active session. This command must include a
Session-Parameters header containing the Session Opcode field. Optionally, a Timeout field can be
included. The successful response to SUSPENDESESSION is 0xA0 (Success, with the high bit set) in the
response code.

The SUSPENDSESSION command and response must fit in a single OBEX packet and have their Final
bits set.

The SUSPENDSESSION command cannot be rejected if a reliable session is active. If the unreliable
session is the current active session then the proper response is 0xC3 (Forbidden). The unreliable session
becomes the active session when a reliable session is suspended.

RESUMESESSION
RESUMESESSION is used to resume a session that has been suspended. A session is suspended by using
the SUSPENDSESSION command or when the underlying transport is broken. This command must
include a Session-Parameters header containing the Session Opcode, Device Address, Nonce, and Session
ID and fields. Optionally, a Timeout field can be included. The Session ID corresponds to the session being
resumed and is the value returned by the server in its response to the CREATESESSION command. The
Device Address and Nonce are the values originally used in the CREATESESSION command. This is true
even if the device address has changed or the session is being resumed over a different transport. Matching
a session requires that all values match not just the Session ID (Device Address, Nonce and Session ID must
match).

The successful response to RESUMESESSION is 0xA0 (Success, with the high bit set) in the response
code. A Session-Parameters header containing Device Address, Nonce, Session ID and Next Sequence
Number fields must be sent. A Timeout field is optional. If the Device Address, Nonce and Session ID do
not correspond to a valid session then 0xD3 (Service Unavailable) should be returned. If the information
returned by the server does not match then the client should disconnect from the server. CLOSESESSION
should not be used since this could be a valid session for another device.

The RESUMESESSION command and response must fit in a single OBEX packet and have their Final
bits set.

If the session is resumed successfully then the client must determine if a packet should be retransmitted. If
the session was suspended gracefully then no packets need to be retransmitted otherwise the client must
follow the algorithm below:

If the Next Sequence Number field equals the sequence number of the last
packet sent then {
 Re-Send last packet
} else if the Next Sequence Number field equals the sequence number of
the next packet to send then {
 If the response to the last packet was not received then {
 Re-Send last packet minus all headers except
 Session-Sequence-Number;
 } else {
 Send next packet;
 }
} else {
 /* Sequence number is invalid */
 Disconnect underlying transport connection to OBEX server;

}

The server sets the Next-Sequence Number field in the RESUMESESSION response to the sequence
number of the next OBEX packet it expects to receive. The server must behave according to the algorithm
below upon receipt of the first request packet from the client after resuming the session.

If the sequence number of the request is equal to the (Next Sequence
Number field minus one) mod 256 then {
 /* The client did not receive the previous response */
 Re-send the previous response;
 Ignore the contents of the request since it was received properly
 before the link was suspended;
} else if the sequence number of the request is equal to the Next
Sequence Number field then {
 /* This is the next packet */
 Process the packet;
 Send the proper response;
} else {
 /* The sequence number is invalid */
 Send an Abort;
}

SETTIMEOUT
The SETTIMEOUT command is used to negotiate a new timeout specifying the number of seconds a
session should be maintained while the session is suspended. This command must include a Session-
Parameters header containing the Session Opcode field. Optionally, a Timeout field can be included. If
the Session-Parameters header does not contain the Timeout field, the request is for an infinite timeout.
The successful response to SETTIMEOUT is 0xA0 (Success, with the high bit set) in the response code. A
Session-Parameters field may be sent with a Timeout field. The lowest value for the timeout is the value
used by both sides. This command can only be used to change the timeout of the active connection. If the
active connection is the unreliable connection then 0xC3 (Forbidden) is the proper response code.

The SETTIMEOUT command and response must fit in a single OBEX packet and have their Final bits
set.

Session Context
In order to resume a suspended session a context must be saved by both the client and the server. This
context includes both session and OBEX information. The context contains the following items.

Item Description
Session ID This is the session ID created for this session. The session ID is generated from the

information sent by both the client and server when the session was created so it does
not actually have to be saved since it can be re-calculated.

Client Device
Address

The device address sent by the client in the CREATESESSION command.

Client Nonce The nonce sent by the client in the CREATESESSION command.
Server Device
Address

The device address sent by the server in its response to the CREATESESSION
command.

Server Nonce The nonce sent by the server in its response to the CREATESESSION command.
Session Sequence
Number

For the client this is the sequence number of the last packet sent. For the server this is
the next sequence number expected.

Last OBEX packet If the session was suspended unexpectedly because of loss of the underlying transport
the last packet sent must be saved in case it needs to be transmitted. Both the client
and the server must save the last packet sent. Also if the OBEX implementation
buffers packets for the application then these must also be saved. It is possible to
create an API between the OBEX layer and application such that the OBEX layer
does not actually need to save the data. The API can allow the OBEX layer to ask the
application to provide the data to be retransmitted.

Target Strings and
Connection IDs

For all directed connections, which were created within the session, the target string
and the corresponding Connection ID must be saved. Along with this is the need to
save enough information to map the target back to the corresponding application.
Also if the inbox connection has been created then this knowledge must also be
saved.

OBEX Packet
sizes

For each OBEX connection the maximum OBEX packet size must be saved.

Applications and services must also save context in order to resume a session. The OBEX layer does not
know how commands such as PUT, GET, SETPATH, etc are used by the application/service so it cannot
save context for them.

Persistence
If the OBEX layer and/or applications are shut down while a session is suspended then the context must be
saved in a persistent data store if resuming the session later is desired.

Examples

Create Session Followed by a Directed Connection

Client Request: bytes Meaning
opcode 0x87 SESSION, Final bit set

0x0015 packet length = 21
0x52 Session-Parameters HI
0x0012 Length of Session-Parameters header (18 bytes)

0x05, 0x01,
0x00

Client Session Opcode field (1-byte)
Create Session opcode

0x00, 0x04,
0xXXXXXXXX

Client Device Address field (IrDA size)

0x01, 0x04,
0xYYYYYYYY

Client Nonce field (4 bytes)

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0024 packet length of 36
0x52 Session-Parameters HI
0x0021 Length of Session-Parameters header (33 bytes)
0x00, 0x04,
0xXXXXXXXX

Server Device Address field (IrDA size)

0x01, 0x04,
0xYYYYYYYY

Server Nonce field (4 bytes)

0x02, 0x10,
0xZZZZZZZZZZZZZZZZ
ZZZZZZZZZZZZZZZZ

Session ID field (16 bytes)

Client Request:
opcode 0x80 CONNECT, Final bit set

0x001C packet length = 28
0x10 version 1.0 of OBEX
0x00 flags, all zero for this version of OBEX
0x2000 8K is the max OBEX packet size client can accept
0x93 Session-Sequence-Number HI
0x00 First packet sent by Client has sequence number of 0
0x46 Target HI
0x0013 Length of Target Header

0x382D2BD03C3911D1A
ADC0040F614953A

UUID for desired service/application
{382D2BD0-3C39-11d1-AADC-0040F614953A}

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0021 packet length of 33
0x10 version 1.0 of OBEX
0x00 flags (LSAP-SEL multiplexing not supported)
0x0800 2K max packet size
0x93 Session-Sequence-Number HI
0x01 Next OBEX packet expected by Server is 1
0xCB Connection Id HI
0x00000001 ConnId = 1
0x4A Who HI
0x0013 Length of Who Header

0x382D2BD03C3911D1A
ADC0040F614953A

UUID of responding application (same value as Target
header in request){382D2BD0-3C39-11d1-AADC-
0040F614953A}

Suspend a Session
Note that Session-Sequence-Number headers are not used when sending Session commands in an active
session.

Client Request: Bytes Meaning
opcode 0x87 SESSION, Final bit set

0x0009 packet length = 9

0x52 Session-Parameters HI
0x0006 Length of Session-Parameters header (6 bytes)
0x05, 0x01,
0x02

Client Session Opcode field (1-byte)
Suspend Session opcode

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x000C packet length of 12
0x52 Session-Parameters HI
0x0009 Length of Session-Parameters header (9 bytes)
0x04, 0x04,
0x000004B0

Timeout Field
Requesting timeout of 20 minutes (1200 seconds)

Resume a Session
If a session was suspended using the SUSPENDSESSION command then resuming the session does not
require retransmission of OBEX packets. If the session was suspended because the underlying transport
was lost it might be necessary to retransmit packets. Three cases exist. The first case is when the last client
request is lost. The second case is when the last server response is lost. The third case is when the client
receives the last response but the server does not know if the client has received it (packets do not need to
be retransmitted in this case). In the first case the client knows the server did not receive the request
because the Next-Sequence-Number field in the response to the RESUMESESSION command indicates
this, so the client will retransmit the command. In the second and third cases the server knows what to do
based on the value of the Session-Sequence-Number field in the first packet sent by the client.

The example below shows the sequence needed to resume the session. Retransmission of packets is not
shown.

Client Request: Bytes Meaning
Opcode 0x87 SESSION, Final bit set

0x0027 packet length = 39
0x52 Session-Parameters HI
0x0024 Length of Session-Parameters header (36 bytes)
0x05, 0x01,
0x03

Client Session Opcode field (1-byte)
Resume Session opcode

0x00, 0x04,
0xXXXXXXXX

Client Device Address field (IrDA size)

0x01, 0x04,
0xYYYYYYYY

Client Nonce field (4 bytes)

0x02, 0x10,
0xZZZZZZZZZZZZZZZZ
ZZZZZZZZZZZZZZZZ

Session ID field (16 bytes)

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0027 packet length of 39
0x52 Session-Parameters HI
0x0024 Length of Session-Parameters header (36 bytes)
0x00, 0x04,
0xXXXXXXXX

Server Device Address field (IrDA size)

0x01, 0x04,
0xYYYYYYYY

Server Nonce field (4 bytes)

0x02, 0x10,
0xZZZZZZZZZZZZZZZZ
ZZZZZZZZZZZZZZZZ

Session ID field (16 bytes)

0x03, 0x01,
0x05

Next Sequence Number field (1-byte).
As an example, the server expects 0x05

Close a Session
Client Request: bytes Meaning
opcode 0x87 SESSION, Final bit set

0x001B packet length = 27
0x52 Session-Parameters HI
0x0018 Length of Session-Parameters header (24 bytes)
0x05, 0x01,
0x01

Client Session Opcode field (1-byte)
Close Session opcode

0x02, 0x10,
0xZZZZZZZZZZZZZZZZ
ZZZZZZZZZZZZZZZZ

Session ID field (16 bytes)

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x0003 packet length of 3

Negotiate a Timeout
Client Request: bytes Meaning
opcode 0x87 SESSION, Final bit set

0x000F packet length = 15
0x52 Session-Parameters HI
0x000C Length of Session-Parameters header (12 bytes)
0x05, 0x01,
0x04

Client Session Opcode field
Set Timeout opcode

0x04, 0x04,
0x000004B0

Timeout field
Requesting timeout of 20 minutes (1200 seconds)

Server Response:
response code 0xA0 SUCCESS, Final bit set

0x000C packet length of 12
0x52 Session-Parameters HI
0x0009 Length of Session-Parameters header (9 bytes)
0x04, 0x04,
0x00000384

Timeout field
Requesting timeout of 15 minutes (900 seconds)

Multiple Transport Support Proposal
This section describes a proposal for supporting sessions over different transports. This is not part of the
errata but really just a method for capturing the idea. The actual method will be proposed as errata at a later
date.

A possible method for supporting a session over different transports utilizes the OBEX Capability Object.
The OBEX capability object must be accessible from any session via a connection to the Inbox service or
the service that is accessed via the non-targeted OBEX connection. OBEX implementations that support
sessions running over multiple transports will list the transport information in the Capability Object. This
includes the name of the transport and the device address used for that transport (e.g. IrDA is the 32-bit
device address, Bluetooth is the 48-bit address, IP is the IP address, etc).

The proposal is to add a new section to the Capability Object listing the transports in which OBEX
currently runs over. These are transports that allow an OBEX reliable session to be resumed independent of
the transport the session was originally created or suspended. The section contains a list of transports where
each transport contains the following attributes:

Protocols The pertinent list of protocols on which OBEX resides. Items in the list are
separated by commas. The first item in the list should be the main physical/link
layer in the protocol stack (e.g. IrDA, Bluetooth, USB, Ethernet, Serial, etc).
Typically this is the only protocol required. Other protocols are listed if needed.

Addresses The list of addresses or port numbers needed to access the OBEX layer. Items in the
list are separated by commas. There should be an item in the Address List
corresponding to each item in the Protocol List. The last address in the Address
List is the value used as the Device Address field in Session commands.

Both attributes are required. Below is an example Transports section with two entries.

<!—Transports Section -->
<Transports>

<Transport Protocols =”IrDA” Addresses=”442356AE” />
<Transport Protocols=”Bluetooth” Addresses=”00F349125E01” />

</Transports>

The method for moving a session to a different transport is to first suspend the session then resume the
session over the new transport.

	Introduction
	OBEX Session Overview
	Reliable OBEX Session Overview
	New OBEX Headers
	Session-Parameters
	Generating a Session ID
	Negotiating Timeouts

	Session-Sequence-Number

	New OBEX Commands
	CREATESESSION
	CLOSESESSION
	SUSPENDSESSION
	RESUMESESSION
	SETTIMEOUT

	Session Context
	Persistence

	Examples
	Create Session Followed by a Directed Connection
	Suspend a Session
	Resume a Session
	Close a Session
	Negotiate a Timeout

	Multiple Transport Support Proposal

