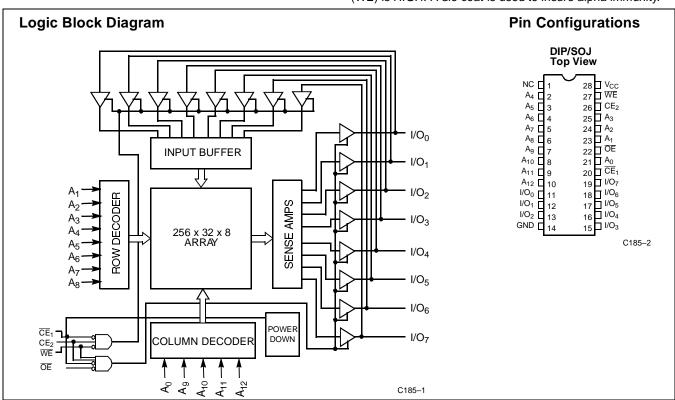


CY7C185

8K x 8 Static RAM

Features

- High speed
 - —15 ns
- Fast t_{DOE}
- · Low active power
 - —715 mW
- · Low standby power
 - -220 mW
- · CMOS for optimum speed/power
- Easy memory expansion with CE₁, CE₂ and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected


Functional Description

The CY7C185 is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is

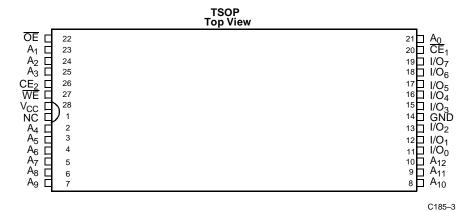
provided by an active LOW chip enable (\overline{CE}_1) , an active HIGH chip enable (CE_2) , and active LOW output enable (\overline{OE}) and three-state drivers. This device has an automatic power-down feature $(\overline{CE}_1$ or $CE_2)$, reducing the power consumption by 70% when deselected. The CY7C185 is in a standard 300-mil-wide DIP and SOJ package.

An active LOW write enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ inputs are both LOW and CE_2 is HIGH, data on the eight data input/output pins (I/O $_0$ through I/O $_1$) is written into the memory location addressed by the address present on the address pins (A $_0$ through A $_1$ 2). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}_1$ and $\overline{\text{OE}}$ active LOW, CE_2 active HIGH, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable $(\overline{\text{WE}})$ is HIGH. A die coat is used to insure alpha immunity.

Selection Guide[1]

	7C185-12	7C185-15	7C185-20	7C185-25	7C185-35
Maximum Access Time (ns)	12	15	20	25	35
Maximum Operating Current (mA)	140	130	110	100	100
Maximum Standby Current (mA)	40/15	40/15	20/15	20/15	20/15


Shaded areas contain preliminary information.

Note:

1. For military specifications, see the CY7C185A/CY7C186A datasheet.

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage to Ground Potential-0.5V to +7.0V

DC Voltage Applied to Outputs
in High Z State^[2]-0.5V to +7.0V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

DC Input Voltage^[2]......-0.5V to +7.0V

			7C18	7C185-12		7C185-15	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-5	+5	-5	+5	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{I} \leq \text{V}_{CC}, \\ &\text{Output Disabled} \end{aligned}$	-5	+5	-5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		140		130	mA
I _{SB1}	Automatic Power-Down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$ Min. Duty Cycle=100%	40		40	mA	
I _{SB2}	Automatic Power-Down Current	$\begin{aligned} &\text{Max. V}_{CC}, \ \overline{CE}_1 \geq V_{CC} - 0.3V, \\ &\text{or CE}_2 \leq 0.3V \\ &V_{IN} \geq V_{CC} - 0.3V \text{ or } V_{IN} \leq 0.3V \end{aligned}$	15		15	mA	

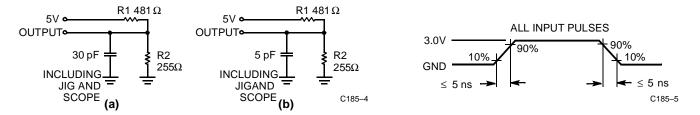
Shaded areas contain preliminary information.

Notes:

2. Minimum voltage is equal to –3.0V for pulse durations less than 30 ns.

^{3. -}Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range (continued)


			7C18	7C185-20		7C185–25, 35	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-5	+5	-5	+5	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$	-5	+5	- 5	+5	μА
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		110		100	mA
I _{SB1}	Automatic Power-Down Current	$\begin{array}{l} \text{Max. V}_{CC}, \overline{CE}_1 \geq \text{V}_{\text{IH or }} CE_2 \leq \text{V}_{\text{IL}} \\ \text{Min. Duty Cycle=} 100\% \end{array}$		20		20	mA
I _{SB2}	Automatic Power-Down Current	$\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.3\text{V} \\ \text{or CE}_2 \leq 0.3\text{V} \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V or V}_{\text{IN}} \leq 0.3\text{V} \end{array}$		15		15	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	7	pF

Note:

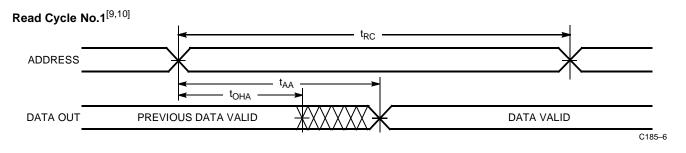
AC Test Loads and Waveforms

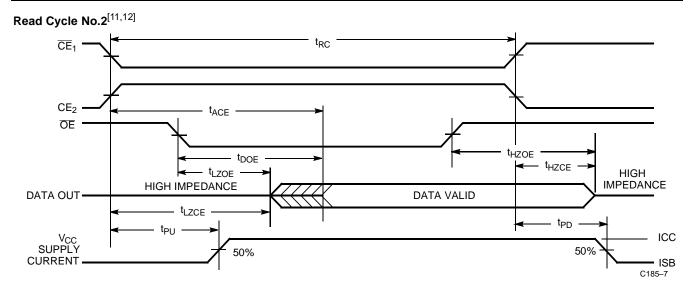
Equivalent to: THÉVENIN EQUIVALENT

^{4.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range^[5]

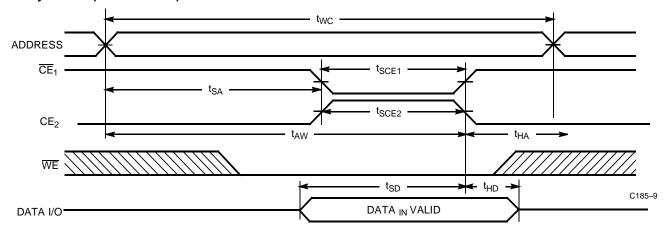
		7C18	35–12	7C18	85–15	7C185-20		7C185-25		7C185-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE				1	1	1					1
t _{RC}	Read Cycle Time	12		15		20		25		35		ns
t _{AA}	Address to Data Valid		12		15		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		5		5		5		ns
t _{ACE1}	CE ₁ LOW to Data Valid		12		15		20		25		35	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		12		15		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		6		8		9		12		15	ns
t _{LZOE}	OE LOW to Low Z	2		3		3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[6]		6		7		8		10		10	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[7]	3		3		5		5		5		ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3		3		3		3		3		ns
t _{HZCE}	CE ₁ HIGH to High Z ^[6, 7] CE ₂ LOW to High Z		6		7		8		10		10	ns
t _{PU}	CE ₁ LOW to Power-Up CE ₂ to HIGH to Power-Up	0		0		0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down CE ₂ LOW to Power-Down		12		15		20		20		20	ns
WRITE CYC	LE ^[8]	I.			·						I	,I
t _{WC}	Write Cycle Time	12		15		20		25		35		ns
t _{SCE1}	CE ₁ LOW to Write End	8		12		15		20		20		ns
t _{SCE2}	CE ₂ HIGH to Write End	8		12		15		20		20		ns
t _{AW}	Address Set-Up to Write End	9		12		15		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	8		12		15		15		20		ns
t _{SD}	Data Set-Up to Write End	6		8		10		10		12		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[6]		6		7		7		7		8	ns
t _{LZWE}	WE HIGH to Low Z	3		3		5		5		5		ns

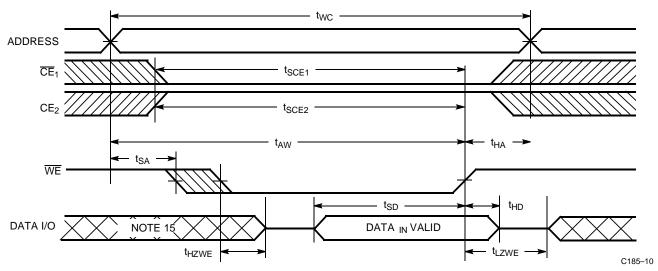

Shaded areas contain preliminary information.


Notes:

Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{0L}/l_{0H} and 30-pF load capacitance. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured \pm 500 mV from steady state voltage. At any given temperature and voltage condition, t_{HZOE} is less than t_{LZCE} for any given device. The internal write time of the memory is defined by the overlap of CE_1 LOW, CE_2 HIGH, and E_2 HIGH, and E_3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms


Write CycleNo.1 ($\overline{\text{WE}}$ Controlled) $^{[10,12]}$



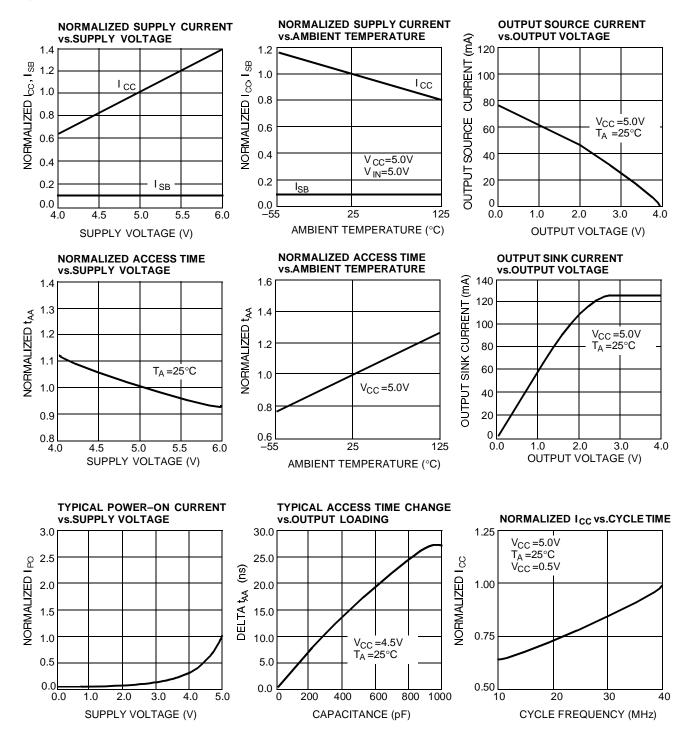
Switching Waveforms (continued)

Write Cycle no.2 (CE Controlled)[12,13,15]

Write Cycle No.3 (WE Controlled, OE LOW)[12,13,14,15]

Notes:

- Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$. $CE_2 = V_{IH}$. \overline{WE} is HIGH for read cycle.


 Data I/O is High Z if $\overline{OE} = V_{IH}$, $\overline{WE} = V_{IL}$ or $CE_2 = V_{IL}$.

 The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, CE_2 HIGH and \overline{WE} LOW. \overline{CE}_1 and \overline{WE} must be LOW and CE_2 must be HIGH to initiate write. A write can be terminated by \overline{CE}_1 or \overline{WE} going HIGH or CE_2 going LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

 The minimum write cycle time for write cycle #3 (\overline{WE} controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} . If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state. During this period, the I/Os are in the output state and input signals should not be applied.

Typical DC and AC Characteristics

Truth Table

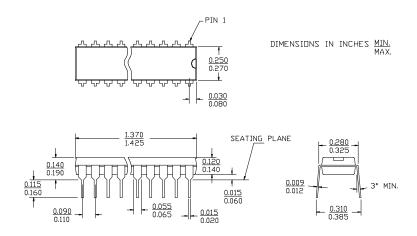
CE ₁	CE ₂	WE	OE	Input/Output	Mode
Н	Χ	Χ	Χ	High Z	Deselect/Power-Down
Х	L	Х	Х	High Z	Deselect/Power-Down
L	Н	Н	L	Data Out	Read
L	Н	L	Χ	Data In	Write
L	Н	Н	Н	High Z	Deselect

Address Designators

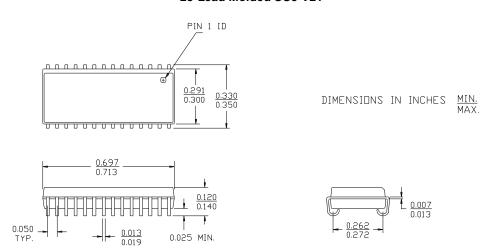
Address Name	Address Function	Pin Number
A4	X3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A9	Y1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A0	Y2	21
A1	X0	23
A2	X1	24
A3	X2	25

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C185-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-12VC	V21	28-Lead Molded SOJ	
15	CY7C185-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-15VC	V21	28-Lead Molded SOJ	7
	CY7C185-15ZC	Z28	28-Lead Thin Small Outline Package	7
20	CY7C185-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-20VC	V21	28-Lead Molded SOJ	7
	CY7C185-20ZC	Z28	28-Lead Thin Small Outline Package	7
25	CY7C185-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-25VC	V21	28-Lead Molded SOJ	7
	CY7C185-25ZC	Z28	28-Lead Thin Small Outline Package	7
35	CY7C185-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-35VC	V21	28-Lead Molded SOJ	7
	CY7C185-35ZC	Z28	28-Lead Thin Small Outline Package	

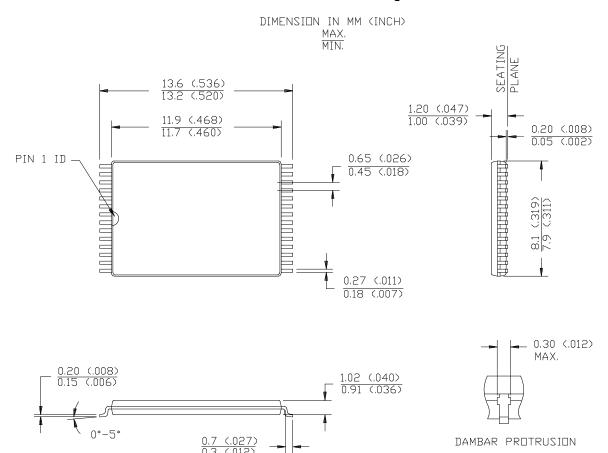

Shaded areas contain preliminary information.

Document #: 38-00037-K



Package Diagrams

28-Lead (300-Mil) Molded DIP P21


28-Lead Molded SOJ V21

Package Diagrams (continued)

28-Lead Thin Small outline Package Z28

